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Postbus 513, NL-5600 MB Eindhoven, The Netherlands 
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Abstract. We show that the secular equation in KKR (Korringa, Kohn and Rostoker) theory 
retainsitsseparable structure alsoin the case ofnon-muffin-tin potentialS. Thisgeneralisation 
has been extensively discussed recently. During this discussion, in which the possible neces- 
sity of so-called near field corrections played an important role, it became more and more 
clear that attention should be concentrated on the basis functions used to represent the 
crystal wavefunction locally. We discuss the construction of reliable basis functions, and 
show that several alternatives can be indicated, which are all theoretically sound. These 
different possibilities have quite different implications as far as their numerical evaluation 
is concerned, and we show that the generalisation of the construction, which is already in 
use in ‘classical’ KKR theory, deserves preference. In the literature, it has been claimed that 
it is absolutely necessary to take into account the part of the crystal potential between the 
boundary of the Wigner-Seitz cell and its circumscribing sphere. The present derivations 
make it clear that basis functions, constructed from only the part of the crystal potential 
inside a Wigner-Seitz cell, may be satisfactory as well as those constructed from local 
potentials with larger support. 

1. Introduction 

In a preceding paper (Molenaar 1988), we discussed the so-called near field (NF) error, 
which is supposed to be frequently made in generalising the KKR theory of Korringa 
(1947) and Kohn and Rostoker (1954) for crystal potentials beyond the muffin tin (MT) 
approximation. This paper introduced a new element in the NF error discussion in that 
it contained a detailed off-shell analysis of multiple scattering (MS) theory for crystals. 
One of the conclusions was that the well known KKR equations are valid for both MT and 
non-MT potentials. This would imply that the NF error, which Ziesche (1974) claimed to 
be present in the work of Williams and Van Morgan (1972,1974), does not exist. In the 
last decade, this issue has often been discussed, e.g. by Van Morgan (1977), Faulkner 
(1979, 1985, 1986), Gonis (1986), Zeller (1987), and Brown and Ciftan (1983, 1984, 
1985,1986a, 1986b). Recent contributions are by Badralexe and Freeman (1987), Brown 
(1988a, 1988b), Gonis et al(1988) and Zeller (1988), which appeared after the :receding 
paper had been written. The approach and conclusions by Bodralexe and Freeman differ 
much from the present contribution and has been commented by other authors (van Ek 
and Lodder 1988, Brown 1988b). We shall therefore pay no attention to it in the present 
paper. The approach of Gonis and co-workers is quite different from the present one, 
but their general conclusions agree with ours. They do not discuss the issue of the basis 
functions, used to represent the crystal wavefunction (CWF). The work of Zeller includes 
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the analytical and numerical analysis of NF corrections for the case of an empty-lattice. 
He concludes that they vanish up to third order. This fully agrees with our work, in which 
they are shown to vanish up to all orders for general potentials. The contributions by 
Brown and Ciftan have been laid down in a series of papers. Because these papers form 
a consistent entirety, we shall refer to them by Brown and Ciftan, without specification 
of a particular article. An extensive and rather complete review of their ideas is given 
by Brown (1988~).  The results of their on-shell approach and the present off-shell 
approach agree much. They both lead to the conclusion, that the secular equation in 
KKR theory remains it separability between lattice and potential factors also in case of 
non-MT potentials. However, Brown and Ciftan claim, that the greater part of the 
literature, including the work of the present author, contains another subtle error, which 
has to do with the basis used to represent the CWF locally. So, the discussion seems to 
come to an end as far as the separability is concerned but continues at another, equally 
essential issue. 

The main purpose of this paper is to present a detailed discussion of the appropriate 
choice of basis functions. We show that, from a theoretical point of view, a multitude of 
satisfactory bases exists, which includes the ones used by Williams and Van Morgan 
(1974), Brown and Ciftan and the present author. However, if it comes to the question, 
how these basis functions could be calculated in practice, we show that the alternatives 
are certainly not of equal value. 

In § 2 we deal with general properties of the CWF and pay special attention to the 
conditions under which a basis allows for an on-shell, local representation of the CWF. 
The construction of appropriate basis functions is the subject of § 3. 

In this construction, matrices C' and S' appear, the calculation of which is a central 
point in the NF error discussion. We point out that these matrices have to be calculated 
from a (first order and linear) boundary value problem, rather than from an initial value 
problem, as stated elsewhere in the literature. The basis functions are uniquely defined 
except for the choice of a matrix c'. The consequences of three different choices for this 
matrix are discussed in Q 4. Section 5 contains a concise derivation of the secular equation 
for non-MT potentials, given an appropriate basis. The conclusions are listed in § 6. 

Throughout this paper, atomic units are used with h = 2, m = 1, h and m being 
Planck's constant and the electron mass, respectively. 

2. Crystal wavefunction 

The crystal wavefunction (CWF) 1 qr) is the solution of the time-independent Schrodinger 
equation (TISE) 

( - A  + Vcr) lqz)  = ElqY).  (1) 
We use the notation k = (n ,  k )  with n the band index and k crystal momentum. The 
crystal potential Vcr has lattice symmetry and we write 

i 

V' is equal to Vcr within the ith Wigner-Seitz (ws) cell Q' and vanishes outside it. From 
translation symmetry, we have 

V'(r - Ri) = Vj(r - R j )  (3) 
with R ,  and R, lattice positions. The dependence of E on the quantum numbers k is the 
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subject of bandstructure calculations, for which we shall derive a secular equation in 8 6. 
This dependence is also referred to as the E-k or dispersion relation and denoted as 

E = E , ( k ) .  (4) 

From the translation symmetry of Vc' it follows, that translation over a lattice vector 
yields a known phase factor for the CWF. The Bloch theorem 

( r  - R ,  I?$?) = exp(ik ( R j  - R , ) ) ( r  - R j  l y r )  ( 5 )  

assures, that knowledge of the CWF inside one ws cell implies the knowledge of the CWF 
everywhere. The CWF can be normalised in the same sense as plane waves via the delta 
function. In practice, it suffices to normalise and interpret the inner product (+? I ?$r) as 
a probability density function only within some ws cell, say QL.  Potentials V ' ,  which 
allow for such a normalisation, are called regular at R, .  

An essential feature of multiple scattering (MS) theory is the expansion of the CWF 
within the different ws cells RL in terms of sets of basis functions, centred around the 
respective lattice sites R, .  It then remains to calculate the expansion coefficients. From 
(2), we see, that within Q1 (1) reduces to 

Let us denote the basis functions, meant to expand the CWF within R', by IE, L ,  i ,  +). 
For general V i ,  it is not self-evident to label these functions by the quantum numbers 
( E ,  L = ( I ,  m))  of the energy-angular momentum representation. However, for spheri- 
cally symmetric V ' ,  L is a convenient quantum number, and one is therefore used to do 
it this way. We assume the basis functions to satisfy in R3 an equation analogous to (6): 

( -A + V')IE, L ,  i ,  +) = EIE, L ,  i ,  +). ( 7 )  

We further demand, that IE, L ,  i ,  +) E L2(R3),  which is consistent with the regularity 
of V i  at R,  and with its bounded support. In § 3, we shall deal with the construction of 
the basis functions in detail. Here, it suffices to remark, that ( - A  + V ' )  is a Hermitian 
operator, so that the eigenfunctions can be chosen to form a complete, orthonormal 
basis in L2(R3). We emphasise, that the potential V i  in (7)  has 5 J L  as its support and not 
the circumscribing sphere of Q'. Brown and Ciftan state that this would introduce the 
so-called near-field error. The analysis in this and the following section shows, that a 
basis defined by (7) is certainly appropriate to represent the CWF within Ri. 

For an expansion of I?$?) at energy E = E,(k) ,  only basis functions at this particular 
energy are needed. Although this result is one of the starting points of KKR theory, one 
seldom realises that any other expansion necessarily contains off-shell components. The 
essential point is, that the basis functions satisfy within Q' the same differential equation 
as the CWF does. Only then, we may write 

(rjq?) = 2 (rlE, L ,  i ,  + ) d E L , k  if r E R i .  (8) 
L 



6562 J Molenaar 

3. The construction of basis functions 

In this section, we shall discuss the construction of the basis functions. The homogeneous 
part of equation (7) 

- A l E ,  L ,  i) = EIE, L ,  i) (9) 

is the well-known TISE for a free particle. The solutions are given by 

E 114 E 114 

(r + Ri 1 %  L ,  = ~ ; / ( * l w L ( f )  7c = - i - jTjL(E,  n 4 (10) 

where the normalisation is such, that 

The j ,  and YL are the spherical Bessel function and the (real) spherical harmonic, 
respectively. These free particle solutions form an orthonormal basis in L2(R3), so that 
we may write 

d E  E IE, L ,  i) ( E ,  L ,  il = 1 
[ L  

with 1 the unity operator. We remark, that the order of summation and integration may 
be interchanged in this projection operator in view of the convergence properties of this 
kind of expansions. To a particular solution of the inhomogeneous equation (7) a linear 
combination of solutions of the homogeneous equation (9) may be added. This property 
is expressed by the Lipmann-Schwinger (LS) equation 

The free space Green's operator G( E) is defined by 

G(E) = (E + i E  + A)- '  = ( E +  + A)-' (14) 

with E infinitesimally small and positive. 

functions IE, L ,  i, +) are also linearly independent in L2(R3). Under the condition 
If we take the rows of C i L f ( E )  in (13) linearly independent, we make sure, that the 

det(CiL,(E))  # 0 (15) 

the functions IE, L ,  i, +) form a complete basis in the subspace of Lz(R3)  spanned by 
the eigenfunctions of the operator ( - A  + Vl) at eigenvalue E. Although the lE, L ,  i, +) 
are orthogonal with respect to energy, as being eigenfunctions of a Hermitian operator, 
they are in advance not orthogonal with respect to angular momentum indices. By 
applying a Gram-Schmidt procedure, they could be orthogonalised, but we do not need 
this property in the following. 

Condition (15) leaves us much freedom in the choice of 0. It is important to realise, 
that every non-singular matrix C' in principle yields a set of basis functions, which is 
formally appropriate to represent the CWF within U. However, the different alternatives 
have quite different implications, as discussed in 0 4. 
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Let us evaluate the particular solution G V’IE, L ,  i ,  +)of equation (7) more in detail. 
We therefore need the matrix elements of G with respect to the free space basis functions 
lE, L ,  i). They are given by 

( E ’ ,  L ,  iiG(E)IE“, L’,  i) = ( E +  - E’)-’S(E’ - E1’)SLL8. (16) 

With the use of the projection operator in (12), we obtain the relation 

with the t-matrix ti, corresponding to the potential Vi, defined by 

t,L,E(,, = ( E ,  L ,  ilV’lE’, L‘ ,  i ,  +) 

~ 1 1 4  
-- - dr’ jL(E,  r’)Vi(r‘)(r’lE’, L’ ,  i ,  +). 

In the last line of this equation, we used the fact that for each i 

jR3 drlr  + R , ) ( r  + Ri/ = 3 

with Ir), r E R3, the eigenfunctions of the position operator. If we substitute expression 
(18) for the t-matrix into equation (17), the energy integration over E‘ can be performed 
analytically by means of the theorem given in the appendix. To that end, we have to split 
up the integration over Q’ into a subdomain Q l ( < v ) ,  which is equal to the open sphere 
with radius r = Irl aroundR,and asubdomain Qi(>r), which is the complement of ai( <r) 
with respect to Q‘. In each of these subdomains the theorem in the appendix applies, 
and we arrive at 

( r + R i / G ( E ) V ’ I E ,  L,i, +) = 2 CiL,(E,r)jL8(E,r) + S i L t ( E , r ) h i , ( E , r ) }  (20) 
L’ 

with h+ the spherical Hankel function of the first kind and the coefficient matrices C‘ 
and Si given by 

If we combine expressions (13) and (20), we find 

It has for the first time been pointed out by Brown and Ciftan, that a set of coupled, 
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ordinary differential equations for Ci and Si can be derived by differentiating equations 
(21a) and (21b) with respect to the radius r.  

d .  
- C i L , ( E ,  r )  = 2 { ( c i c t ( E )  + C,,(E, r))ALtJL,(E,  r )  + &,,(E, r)Bi8,L,(E,  r ) }  
d r  L" 

(23a) 
with the matrices A' and B' given by 

AZL8(E,  r)  = i ~ r 2 j l ( ~ r ) V i L , ( r ) h I t ( ~ r )  (24a) 

B ~ ~ , ( E ,  r )  = i ~ r 2 h l t ( ~ r > V Z L , ( r ) h I f ( V ' E r )  (24b) 

ViL t ( r )  = diYL(P)Vi(r, P)YLt(P). (25) 

and the matrix V i L t ,  as usually, defined by 

i 
Note, that the integration in the rhs of this definition runs over those parts of the surface 
of a sphere of radius r around Ri, which lie within Q'. This surface of integration may 
thus consist of several unconnected parts. 

d .  
- S L ~ , ( E ,  r )  = -E {(&,,,(E) + c L ~ ( E ,  r ) )KLoL8(E,  r )  + s : ~ ( E ,  r)LLtZLr(E, r ) )  
d r  L" 

with K' and L' given by 

For S' we have an equation analogous to (23a): 

(23b) 

(24c) 

( 2 4 4  

~ i ~ ,  ( E ,  r )  = i V Z r 2 j l ( V ' E r ) V i L ,  (r)jLt ( a y )  

LLL,(E,  r )  = AL,,(E, r ) .  
Given a potential Vi with support Q', the matrices A', B', K'and L'are easily calculated. 
For r outside the circumscribing sphere of Q', they vanish. To calculate C' and S' 
numerically, it remains to specify the values of C' and Si somewhere in the interval 
[0, R k ] ,  with RL the radius of the circumscribing sphere of Q'. It has not yet been pointed 
out in the literature that, in the first instance, the equations (23a) and (23b) should 
be considered to establish a boundary value problem with homogeneous boundary 
conditions 

C L L , ( E ,  r )  = 0 r = R' C (25a) 

S L L 8 ( E ,  r )  = 0 r = 0. (25b) 

With these conditions the problem is well-posed and could be solved by a variety of 
standard software. Some care is needed in the neighbourhood of r = 0, because there 
the matrices A and B diverge. These divergences are cancelled in the products in the rhs 
of (23a) and (23b), but require, from a numerical point of view, subtle treatment. In 
these considerations, the choice of the matrix E' plays an important role, which we deal 
with in the following section. 

4. The matrix c' 

In this section we present three possible choices for the matrix c 'and discuss their merits. 
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4.1. 

If we evaluate expression (22) for the single site wavefunction ( r  + RiIE, L ,  i, +) on or 
outside the circumscribing sphere with radius RL, we obtain in view of (25a) 

This expression is well-known and commonly used in MS theory in combination with the 
choice 

- 
C I L 8 ( E )  = (27) 

The usual interpretation of (26) with (27) is to look at the total wavefunction as the sum 
of an incoming free wave j L  and the corresponding scattered waves h+ , weighted by the 
t-matrix. In the MT approximation, one often assumes V i  to be spherically symmetric. 
In that case, we meet with a diagonal t-matrix and an incoming wave j L ,  which gives rise 
to only one outgoing wave h t  . Condition (27) may be called the 'classical' choice for 
c', because it is commonly used in KKR theory for MT potentials. 

4.2. 

It is proposed by Brown and Ciftan to choose 

&,(E)  + CLL,(E, 0) = d L L , .  

This nice idea allows for a different view upon equations (23a) and (23b). It is clear that 
(23a) for C' also holds for c' + C'. With condition (28 ) ,  one has initial conditions for the 
quantities + C' and S' at the origin, namely (28) together with (25b). This implies that 
the differential equations could be solved as an initial value problem rather than as a 
boundary value problem. This approach is appealing, because the former are numeri- 
cally easier to solve than the latter. It has, however, three disadvantages: 

(i) It is hard to integrate equation (23)  away from the origin, because now the rhs 
certainly diverges. 

(ii) The proof that choice (28)  is consistent with condition (15) fails until now. For 
the 'empty lattice' with V'  = 0 (or constant) this point is trivial, but for less simple V' 
the proof is probably hard. 

(ii) The resulting wavefunctions and t-matrices, obtained via condition (28) ,  will 
much differ from the t-matrices usually applied in KKR theory for MT potentials. One 
should not introduce such a discontinuity, if not absolutely necessary. 

4.3.  

To overcome the first disadvantage mentioned in 8 4.1,  one could try to use the condition 

CLLt(E) + CLLr(E,  0) = 0. (29) 
Although this choice diminishes the numerical problems, the two other disadvantages 
are still valid, unless one can prove that conditions (29) and (27) are in fact identical. 
This is a nice subject for further research, but will not be pointed out in this paper. 
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5. The secular equation 

In 8 2  we formally introduced in each ws cell Qi a complete set of basis functions 
IE, L ,  i, +). The defining equation ( 7 ) ,  together with the mentioned boundary con- 
ditions, do not uniquely determine this basis. This point has been further discussed in 
§ 3. Here, we assume that some choice is made and a particular basis set is known. We 
shall derive the secular equation, from which the expansion coefficients of the CWF and 
the E - k relation can be calculated, and show that this equation has a separated 
structure, i.e. the information from the lattice structure and the information from the 
crystal potential are contained in different factors. The present derivation is much more 
concise than the one given earlier (Molenaar 1988), though the resulting equation is the 
same. 

The CWF \I)") satisfies the LS equation 

Ivy)  = G(E)VcrlI)y). (30) 

In view of the partitioning (2), we write this in the form 

Note, that partitioning (2) only holds because V' has Q' as its support. The present 
derivation would break down if one would make use of local potentials with the cir- 
cumscribing spheres of C2' as supports. 

Substitution of the on-shell expansion (8) yields the equation 

2 (1 - GV')IE, L ,  i, +) d k L , k  = 2 2 GV'IE, L ,  j ,  +) d!%.,k. 
L ] # I  L 

(32) 

Note, that in the sequel the expansions of the CWF are always used within the appropriate 
ws cells. We take the inner product at both sides with (r/  and use equation (13). The lhs 
of equation (32) then reduces to a sum over free particles wavefunctions: 

If we insert unity operators as given in (12) into the rhs of (32), we obtain the expression 

(34) 
I 2 jam dE' z , ( r \ E ' ,  L ' ,  i ) G ' ~ ' L ' , E ' L " ( E ) ~ E ' L " , E L  d E L , k  

I f 1  L 

with the t-matrices ti given by (18) and the elements of the matrix G'J defined by 

Gk,L ,E'Lt8(E)  = ( E ' ,  L ' ,  ilG(E)IE", L",j) 

6(E' - E")J[fLc8(E') .  
1 - - 

( E +  - E ' )  (35) 

For i = j this expression reduces to the one given in (16). The matrix JV is defined by 

J : , ~ . ( E )  = ( E ,  L ,  i l ~ ,  L ' J .  (36) 

Previously (1988) we showed that J'j is explicitly given by 



Generalised KKR theory for non-mufin-tin potentials 6567 

J f ,L , (E)  = 4n 2 i‘-”‘CLL,L8,jL“(E, Ri - R j )  (37) 
L” 

with CLL8r denoting Gaunt coefficients. For later purposes, we introduce a matrix G by 
replacing the Bessel function in (37) by a Hankel function: 

G k , L , ( ~ )  = 4 n x  ~ ( ‘ - ‘ ~ + “ I ) C ~ ~ ’ ~ , , ~ + ( E , R ~  - R , > .  (38) 
L 

For i = j we take this matrix vanishing. The Fourier transform G of G with respect to 
lattice sites is given by 

GL,L!(E, k) = 2 G;,,((E) exp(ik. ( R i  - R j ) )  
i ( i+ i )  

(39) 

withj  running over lattice sites. 

containing terms, we obtain the integral 
The energy integration in (34) can be analytically performed. If we isolate the energy 

with r’ running over Q j .  We restrict the range of r to an open ball around R i ,  with its 
radius such that 

lRi - R j /  > Ir - Ri/ + /r’ - ~ ~ 1 .  (41) 
For the known lattice structures, this open ball is not empty. Under condition (41), we 
may apply the theorem in the appendix. Then, we obtain for the integral (40) 

n i * j ~ , ( * l r - R i l ) h ~ , ( ~ l R i  - Rjl)jl,,(*1r’ - R j l ) .  

If we substitute this product back into expression (34), this simplifies to 

A further reduction is obtained from (3). This implies, that all t-matrices tj are the 
same, so that the position index may be dropped. Further, we have that the expansion 
coefficients dJ are related to each other via the Bloch condition (5): 

d L L , k  = eXp(ik * (Ri  - R , ) )  d i L , k .  (43) 

So, we may also drop the upper index of d. Substitution into expression (42) yields 

Expressions (44) and (33) both contain a summation over the particle wavefunction. If 
we equate them and reorder the indices, we find 

with M given by 

By multiplying equation (45) with a particular spherical harmonic and integrating over 
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angles, we project out the L summation one particular Bessel function. Because Bessel 
functions are not vanishing in an open neighbourhood of Ri, we may conclude that the 
secular equation is 

We remark that the separation of variables, which is present in the free particle wave- 
functions (10) and allows for a projection argument, is not essential to arrive at the 
secular equation. Instead of the spherical Bessel functions, each other expansion in 
terms of linearly independent functions in an open neighbourhood of Ri would suffice 
to reduce an equation like (45) to the reduced form (47). The constant factors in (46) 
have their origin in the normalisation used for the free space wavefunctions in (10). If 
we choose ciL. = b L L 8 ,  the matrix M is the usual KKR matrix for MT potentials. It thus 
appears that relaxing the muffin tin restriction has no influence on the structure of the 
resulting secular equation. This generalisation has only impact on the way the t-matrix 
is calculated. 

6 .  Conclusions 

Here, we shall list the most important conclusions from the discussions in the preceding 
sections. 

(a) Solutions (13) of equation (7) form, under conditions (15) and regularity con- 
ditions at the origin and infinity, a complete set of basis functions in the Hilbert space 
L2(rW3), Within a ws cell, the CWF can thus be represented by these bases. 

(b )  Representation (8) with (22) of the crystal wavefunction is on-shell, because the 
CWF and the basis functions used satisfy the same differential equation within the ws 
cell. 

(c) The choice of the matrix c' in (13) defines the basis uniquely. It makes quite a 
difference, which choice is made, because the numerical evaluation of the expansion 
matrices C' and S', defined in (21), heavily depends on it. The 'classical' choice (27) 
implies that C'andS'are to be determined from a boundary value problem with boundary 
conditions (25a, b). This problem is well posed and can be solved by standard techniques, 
provided that some numerical care is taken at the origin. Choice (28) for c' allows in 
theory the matrices C' and S' to be determined from an initial value problem with initial 
conditions (28) and (25b). Although this aspect gives it some preference above the 
'classical' approach, this idea has serious drawbacks, both theoretically and numerically. 

( d )  The form of the secular equation (47) for generalised KKR theory shows a 
separation between structural and potential parts and is in essence the same as the 
secular equation of KKR theory. The absence of the MT approximation manifests itself 
only through the t-matrices used. The form of these t-matrices depends on the basis 
used. However, the band structure equation (47) yields results, which are independent 
of the used basis functions. 

(e) In the defining equation (7) for the basis functions, we take V '  to be equal to the 
crystal potential within the ith ws cell and vanishing outside it. Brown and Ciftan take 
V'  equal to the crystal potential inside the circumscribed sphere and claim that neglect 
of the potential outside the ws cell, but inside its circumscribing sphere would introduce 
an essential error. We have shown above that this is not the case. This does not mean 
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that the approach of Brown and Ciftan is wrong. It simply leads to a different basis, 
which may also be complete in L2(R3). The only essential requirement in choosing the 
support of V i  is, that V i  coincides with Vcr inside the ws cell, because only then an on- 
shell expansion of the CWF can be obtained. 

In general, we may conclude that, after years of discussions, the confusion about the 
'near field' corrections in generalised KKR theory has cleared up both along the lines of 
the commonly used on-shell approach and the present off-shell approach. The result is 
remarkable in that extending KKR theory beyond the MT approximation lets the secular 
equation and in particular its separable structure nearly unchanged and only modifies 
the calculation of the t-matrices in a straightforward manner. 
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Appendix 

Let I be defined by 
n 

I = Ioz dkf(k) (E + ie - k2)- '  n jI l(kri)  
i = l  

withjIi Bessel functions, E a constant and E infinitesimally positive. 
Under the restrictions 

I, is even (A21 

(A3) 

X r, < r n  # O  (A41 

~ l 1 + p 2 l , + 1  (A51 

1=1 

f ( k )  is an even function of k 
n - 1  

1=1 

n - 1  

1 = 1  

n + 2 > t  (A61 

f(z) - z p  and f(z) - 2' (A71 

wherep and ta re  defined by the asymptotic behaviour off, i.e. 

2' 0 z+ a 

it holds, in the limit E 1 0, that 

with h: = j r  + inI a spherical Hankel function and n1 a spherical Neumann function. 
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The proof of this theorem is given in appendix B of Molenaar (1988). 
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